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1. Introduction

In this effort, we use a convolutional neural network

(CNN) based architecture that is capable of identifying

the important portions of a video, and using them to de-

termine the synchronization between the audio and visual

signals. We study whether introducing attention modules

would help the network emphasize on corresponding parts

of the input data in order to make a better decision. To con-

duct this study, we explored defining the problem of audio-

video synchronization in two different ways.

Synchronization as a Regression Problem: Defining

audio-visual synchronization as a regression problem, we

directly estimate the amount of misalignment between the

audio and visual signals. To bound the output of the regres-

sion function, we make the assumption that misalignment

between the audio and visual domain is bounded and within

130 frames (approximately 4.3 seconds given the frame rate

of 29.97 Hz).

Synchronization as a Binary Classification Problem

Given a video, network is trained to be able to decide

whether the audio and visual modalities of the video are

synchronized with each other or not. In order to train the

network for this task, we expose the network to synchro-

nized and non-synchronized audio-video streams alongside

their binary labels during training time. Defining the prob-

lem as classification, alleviates the limitation of being able

to decide about unbounded misalignments. However, it

would not estimate the amount of misalignment.

In this paper we propose an attention based framework,

trained in a self-supervised manner, for the audio-visual

synchronization problem. The proposed attention modules

learn to determine what to attend to in order to decide about

the audio-visual synchrony of the video in the wild. We

evaluate the performance of each of the two approaches on

publicly available data in terms of regression error, and clas-

sification accuracy. We observe that taking into account

temporal and spatio-temporal attention leads to improve-
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ment in both metrics. We also evaluate the performance

of the attention modules qualitatively, verifying that the at-

tention modules are correctly selecting discriminative parts

of the video.

2. Framework

Figure 1. Architecture of the proposed approach. The video is

split into several 25 frame temporal blocks. Each temporal block

is passed through a 3D convolutional neural network, extracting

spatio-temporal features from each block. The features are the

input to the attention module, where they are evaluated in terms

of discriminative power and combined into one video-level global

feature. The decision is finally made based on the global feature.

Our proposed neural network architecture involves three

main steps. The first step is feature extraction, where we

split the input video into several blocks, in time, and extract

joint audio-visual features from each block. In the second

step, we apply attention modules, evaluating the importance

of different (temporal or spatio-temporal) parts of the video.

Finally, we combine features extracted from different parts

of the video into a per video global feature based on the

weights obtained from the attention modules. In the follow-

ing, we provide a summary on the data representation, the

two architectures used for temporal and spatio-temporal at-

tention, and the training and testing procedures. For a more

detailed report on this effort please refer to [2].
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2.1. Joint Representation

The backbone of our architecture, is that of [3]. As

shown in Figure 1, we divide the input video into N non-

overlapping temporal blocks of length 25 frames (approx-

imately 0.8 seconds given the frame rate of 29.97 for our

videos), namely B1, B2, ..., BN . We extract a joint audio-

visual feature from each temporal block resulting in a H ×

W ×T ×C tensor fi for block Bi. fi is obtained by apply-

ing the convolutional network introduced in [3], where vi-

sual and audio features are extracted separately in the initial

layers of the network and later concatenated across chan-

nels. The visual features result in a H × W × T × Cv

feature and the audio feature results in a T × Ca feature.

The audio feature is replicated H ×W times and concate-

nated with the visual feature across channels, resulting in

a H × W × T × (Cv + Ca) dimensional tensor where

C = Cv + Ca. The network is followed by 5 convolution

layers applied to the concatenated features, combining the

two modalities and resulting in a joint representation. The

joint representation is the input to the attention modules. We

describe the details of applying temporal and spatiotempo-

ral attention modules in the following sections.

2.2. Attention Modules

Our attention modules consist of two layers of 1× 1× 1
convolutions applied to the joint audio-visual features, re-

sulting in a scalar confidence value per block (temporal or

spatio-temporal). The confidences are then passed through

a softmax function to obtain a weight for each of these

blocks. The weights are used to obtain a weighted mean of

all the features of the video. The weighted mean is passed to

the decision layer (as depicted in Figure 1). In other words,

the attention modules evaluate each portion of the video (a

temporal or spatio-temporal block) in terms of its impor-

tance and therefore, its contribution to the final decision. In

the following, we will go over a more detailed description

of the two attention modules studied in this work.

2.2.1 Temporal Attention

As explained in Section 2.1, a video results in a set of fea-

tures f1, f2, ..., fN . For the temporal attention module, we

apply global average pooling to each H×W×T×C dimen-

sional feature fi across spatial and temporal dimensions, re-

sulting in a 1× 1× 1×C dimensional feature f
gap
i . There-

fore, representing each block of the video using a single

global feature vector f
gap
i . We apply 1× 1× 1 convolution

layers on the global average pooled features, resulting in a

single scalar confidence value ci for each temporal block

Bi. The confidence value ci is intuitively capturing the ab-

solute importance of that specific temporal block. Applying

a softmax normalization function over all the confidence

values of different time-blocks of the same video, we ob-

tain a weight wi for each feature f
gap
i . The normalization is

performed to enforce the notion of probability and keep the

norms of the output fearures in the same range as each in-

dividual global feature. The weighted mean of the features

Σiwif
gap
i is passed to the decision layer (see figure 2).

Figure 2. The temporal attention module: 1×1×1 convolutions are

used to obtain a confidence score for each single temporal block.

All the confidences are passed through a softmax function and the

resulting weights are applied to the temporal features (1×1×1×

C). The weighted average of all features (a C dimensional vector)

is then passed through the decision layer.

2.2.2 Spatio-temporal Attention

For the spatio-temporal attention module, we apply the

1×1×1 convolution layers directly on the H×W ×T ×C

dimensional features, resulting in a set of confidence val-

ues cH×W×T for each block. We then enforce the notion

of probability across all the confidence values of all the

blocks (H × W × T scalar values). The decision is made

based on the weighted average on the spatio-temporal fea-

tures ΣN
n=1

ΣT
i=1

ΣH
j=1

ΣW
k=1

wnijkf
ijk
n , where f ijk

n is a fea-

ture vector extracted from a single spatial block i, j, k at

temporal block n (see figure 3).

2.3. Baseline

In order to evaluate the effect of our temporal and spatio-

temporal attention modules, we compare their performance

with the performance of a uniform weighting baseline. As

the attention modules simply calculate weights for the fea-

tures, and the decision is made based on the weighted aver-

age of those features, as a baseline, we simply feed the aver-

age of the input features directly into the decision layer. In

other words, we evaluate the effect of bypassing the weight-

ing step.

3. Experiments

In this section, we go over the dataset used for training

and evaluating the performance of the proposed approach

in Section 3.1. We report the quantitative results in Section

3.2 and go over some qualitative examples in Section 3.3.
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Figure 3. The spatio-temporal attention module: 1×1×1 convolu-

tions are used to obtain a confidence score for each single spatio-

temporal block (each spatial block within each temporal block).

All the confidences are passed through a softmax function and

the resulting weights are applied to the spatio-temporal features

(1×1×1×C). The weighted average of all features (a C dimen-

sional vector) is then passed through the decision layer.

3.1. Dataset

We evaluate the proposed approach on the publicly Au-

dioSet [1] dataset, which contains an ontology of 632 au-

dio event categories. We train the temporal and spatio-

temporal modules on 3000 examples of the speech subset

of the dataset, and test the proposed approach on 7000 ex-

amples randomly selected from all 632 categories of the

dataset. Furthermore, to show explicitly how our attention

modules perform, we evaluated our method on 800 exam-

ples from each of the two selected categories: speech, and

generic impact sound. These two classes are good exam-

ples for evaluation of our method as they include speech or

sound classes such as breaking, hitting, bouncing etc. in

which attention plays an important role. For the classifica-

tion task, we used each video as a positive example, and

a misaligned version of the video as a negative example.

For the regression task, we use randomly misaligned videos

alongside with the amount of their misalignment for train-

ing the network.

In our experiments the input videos are resized to 224×
224. The length of each input sample is selected to be 125

frames which is broken into blocks of 25 frames.

3.2. Quantitative Evaluation

We evaluate the performance of the proposed approaches

in terms of binary classification accuracy and regression

Mean Absolute Error (MAE).

The classification accuracies are reported in Table 1. The

first row shows the performance of the baseline method,

where no attention module is used. Comparing the first

two rows of the table, we can observe the effect of using

temporal attention in the classification accuracy. We can

see that in the speech category, using temporal attention

leads to 4.9% improvement in classification accuracy. In

the generic sound class, temporal attention yields a higher

accuracy boost of 9.3%. We attribute the lower margin in

the speech class to the fact that in speech videos, most of

the temporal blocks of the video do contain discriminative

features (lip movement) and therefore, the weights are gen-

erally more uniform (see Figure 6). The last row shows

the performance of our network with the spatio-temporal

attention module. In the speech class, incorporating spatio-

temporal attention leads to 3.8% compared to using tempo-

ral attention, and 8.7% compared to not incorporating atten-

tion at all. In the generic sound class a 9.8% improvement is

achieved using the spatio-temporal attention (compared to

not using attention). Spatio-temporal attention has a lower

margin of improvement over temporal attention in generic

sound class compared to speech. This lower margin could

be associated to the fact that speech videos tend to be more

spatially localized (towards the face of the speaker).

Method Random subset Speech Generic sound

Baseline network [3] 0.611 0.716 0.658

Temporal attention 0.733 0.765 0.751

Spatio-temporal attention 0.765 0.803 0.756

Table 1. Classification accuracy: Left column contains the meth-

ods being evaluated in terms of binary classification accuracy. The

rest of the columns show the performance of methods on the Ran-

dom subset, Speech and Generic sound category of the AudioSet

[1] dataset, respectively.

The regression MAEs are reported in Table 2. As it can

be seen, trends similar to that of the classification formu-

lation, can be observed. The temporal attention module

contributes more to generic sounds, while spatio-temporal

attention module boosts the performance in the speech cat-

egory.

Method Random subset Speech Generic sound

Baseline network [3] 65.15 63.61 65.28
Temporal attention 28.67 26.67 28.67

Spatio-temporal attention 28.67 28.54 28.80

Table 2. Regression error (number of frames): Left column con-

tains the methods being evaluated in terms shift errors in the scale

of number of frames, on the same categories of the AudioSet [1]

dataset.

To further illustrate the effect of attention modules, we

plot and compare the distributions of output scores from our

classification network in Figure 4. As it can be observed, at-

tention modules help in better separating of the two classes

of sync and un-sync data.

We also plot the distribution of misalignment error

(MAEs) of the regression models is Figure 4. The desired

distribution of errors is the one with a peak closer to 0. It can

be observed that the base line error (without any attention)

does not yield to errors less than 40 frames, while our at-

tention modules significantly improve the performance and

have lower values of error.
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Figure 4. The distribution of scores predicted by the proposed ap-

proach is compared to that of the baseline. The distribution of the

scores obtained from negative examples (non-synced videos) are

shown in blue, and the distribution of the scores for the aligned

videos are shown in orange. It can be observed that using atten-

tion modules causes more successful separation of positive and

negative examples by the network. Distributions of Mean Abso-

lute Errors (MAE) of the regression models in terms of number of

frames. Attention modules significantly shift the peak of the error

distribution closer to 0.

Figure 5. Classification accuracy vs misalignment values.

Furthermore, in Figure 5 we plot the classification accu-

racy vs misalignment values of the models. This plot shows

that our proposed attention models are robust to the amount

of misalignment, and maintains similar performance.

3.3. Qualitative Evaluation

Here we visualize some examples of the weights esti-

mated by the network. We expect the informative parts of

the video to lead to higher values. Two examples of the

temporal attention weights are shown in Figure 6 (one from

each class of dataset). In each example, each row contains

one of the temporal blocks. We also show the score for each

temporal block. As it can be observed, in the example on

the left, a high weight has been assigned to the informative

moment of the shoe tapping the ground. In the example on

the right, the moments when the words are uttered by the

actor are selected as the most informative parts.

In Figure 6, we show the weights obtained from the

spatio-temporal module on the same examples. It can be

obsersved that the network correctly assigns higher values

to more discriminative regions of the video (e.g. shoe tap-

ping the floor, and the speakers face).
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Figure 6. Left:Qualitative examples from the temporal attention

module: Each row shows a temporal block of a video, high-

lighted with its corresponding attention weight (color-coded).

Right:Qualitative examples from the spatio-temporal attention

module. We picked the same examples as the temporal attention

scores. It can be seen that the location of the shoe tapping on the

floor and the face of the speaker are localized by the network.

4. Conclusion

In this work we studied the effect of incorporating tem-

poral and spatio-temporal attention modules in the problem

of audio-visual synchronization. We modeled the audio-

visual synchronization both as a regression problem and a

binary classification problem. While the regression is de-

fined as a bounded problem and predicts the misalignment

error directly from the input, the classification handles the

case with unbounded shifts and makes a decision about in-

puts synchronization.

Our experiments suggest that a simple temporal attention

module could lead to substantial performance gains in both

regression and classification problems. Also, a more gen-

eral spatio-temporal attention module could even achieve

better performance as it is additionally capable of focusing

on more discriminative spatial blocks of the video. Visu-

alizing the weights generated by the temporal and spatio-

temporal attention modules, we observe that the discrimi-

native parts of the video are correctly given higher weights.

To conclude, our experiments suggest that incorporating at-

tention models in the audio-visual synchronization problem

could lead to higher accuracy. Other variations of this ap-

proach, such as using different backbones for feature ex-

traction, adopting different architectures such as recurrent

models, could be potentially explored in the future.
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